בשחמה יעדמל אובמ תואלולו ם יאנת, םיטפשמ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "בשחמה יעדמל אובמ תואלולו ם יאנת, םיטפשמ"

Transcript

1 מבוא למדעי המחשב ולולאות הרצאה 3 :משפטים,תנאים מבוסס על השקפים שנערכו ע"י שי ארצי, גיתית רוקנשטיין, איתן אביאור, סאהר אסמיר,מיכאל אלעד, רון קימל ודן רביב. עדכון אחרון: סמסטר חורף 2012.

2 תוכנייה משפטים בשפת משפטי תנאי (Statements) C - לולאות for while דוגמאות: מציאת GCD מציאת שורש מציאת מספר ראשוני (אלגוריתם אוקלידס) (שיטת ניוטון-רפסון) 2

3 Statements - משפטים בשפת C משפטביטוי statement) :(expression ביטוי שאחריו';' נחשבכמשפט. לעיתיםקיימות תוצאותלוואילמשפט כזה ולעיתיםלא. y++; x = ; משפטריק statement) :(empty מורכב מ- ';' בלבד. איןלמשפט תוצאותלוואי. משפט מורכב :(compound statement) רצף משפטיםהמוקפיםבסוגריים מסולסלים {} { כזה נקרא גםבלוק. רצף נחשב כמשפט אחד. } t = x; x = y; y = t; 3

4 תוכנייה משפטים בשפת משפטי תנאי (Statements) C - לולאות for while דוגמאות: מציאת GCD (אלגוריתם אוקלידס) מציאת שורש (שיטת ניוטון-רפסון) 4

5 משפט if expression 0 Statement 0 if (expression) statement הינו,True זהו משפט מהצורה: אם ערך האמת של expression מבצעיםאת.statement אם ערך האמת של expression הינו,False מדלגיםעלביצוע statement (ועוברים למשפט הבא אחריו). לרוב, statement יהיה משפט מורכב. לדוגמה: if(b*b < 4*a*c) { printf( no real solution to the quad. equation.\n ); return 1; } 5

6 משפט if-else expression 0 0 if (expression) statement1 else statement2 זהו משפט מהצורה: st1 st2 אם ערך האמת של expression הינו,True מבצעיםאת statement1 מדלגיםעל statement2 ועוברים למשפט הבא. אם ערך האמת של expression הינו,False מדלגיםעל,statement1 מבצעיםאת statement2 ואזממשיכים לבא. if(tomorrow_is_rainy == y ) printf( Take your umbrella.\n"); else printf( Leave the umbrella at home.\n"); לדוגמה: 6

7 קינון if-else מה מבצע המשפט הבא? if(a==1) if(b==2) if(b==2) printf("***"); printf("***"); else else printf("###"); printf("###"); b =2 2 a =1 *** ### 1 ### ### if(a==1) { if(b==2) printf("***"); } else printf("###"); ה- else מקושר תמיד ל- if האחרון. ניתן להפריד ביניהם באמצעות{...}. 7

8 תוכנייה משפטים בשפת משפטי תנאי (Statements) C - לולאות for while דוגמאות: מציאת GCD מציאת שורש מציאת מספר ראשוני (אלגוריתם אוקלידס) (שיטת ניוטון-רפסון) 8

9 לולאות קטע קודהמתבצע מספרפעמיםנקרא לולאה.(loop) מספרהפעמים תלויבערכו שלביטויהמחושב במהלך ריצתהתכנית. כל אחדמביצועי הלולאהנקרא איטרציה.(iteration) ב- C קיימים שלושה משפטיםהמאפשרים ביצוע לולאות: while statement for statement do-while statement 9

10 לולאת while expression 0 while (expression) statement זהו משפט מהצורה: 0 statement כל עודערך האמת שלexpression.statement מבצעיםאת,True הינו לדוגמה, חישוב עצרת: unsigned int n, factorial = 1, i = 2; scanf( %d, &n); while(i <= n) { factorial *= i++; } printf("n!= %d", factorial); 10

11 לולאת do-while statement do statement while(expression); זהו משפט מהצורה: 0 expression 0 מבצעיםאת statement כלעוד ערך האמת של expression הינו True (פעם אחתלפחות). לדוגמה, קליטת מספר חיובי: int x; do { printf("please enter a positive number: "); scanf("%d", &x); } while (x <= 0); 11

12 לולאת for expression1 זהו משפט מהצורה: for(expression1;expression2;expression3) statement expression2 0 statement 0 מבצעיםאת expression1 (אתחול) ואזכלעוד ערך האמת של expression2 (תנאי) הינו,True מבצעיםאת statement ואז expression3 (קידום). כ"א משלושת הביטוייםיכוללהיותריק. expression3 expression1 while (expression2) { statement expression3 } שקול ל: 12

13 - המשך לולאת for sum = 0; for(i = 1; i <= n; i++) sum += i * i; : n i= 1 i 2 חישוב הביטוי for(i = 2 ; i <= n; i++) factorial *= i; חישוב עצרת: printf("n!= %d", factorial); i = 2; while(i <= n) { factorial *= i; i++; } printf("n!= %d", factorial); השווה מול השימוש ב- while : 13

14 דוגמה: מציאת המספר הקטן ביותר בקלט scanf("%d", &min); for(i = 1; i < n; i++) { scanf("%d", &num); if(num < min) min = num; } #include<limits.h>... min = INT_MAX; for(i = 0; i < n; i++) { scanf("%d", &num); if(num < min) min = num; } נכתוב תוכניתהמקבלת כקלט סדרה שלn מספרים (שלמים) ומוצאת עבורם אתהערך המינימאלי. אלגנטי? קריאתהערכים נעשיתפעם מחוץ ללולאה, ובהמשך בתוכה. ואם נרצה את כל הקריאות בלולאה? נאתחלאתmin ל- INT_MAX קבוע המוגדר ב- limits.h וערכו הואהערך השלם הגדול ביותר שיכולמשתנה מטיפוסint לקבל. זה אינו הפתרון היחיד האפשרי! 14

15 - המשך לולאת for שימוש באופרטור פסיק,: חישובביטוי מהצורה exp1, exp2 מתבצע ע"יחישוב exp1 חישוב.exp2 ערכו (טיפוסו) שלביטוי זההינו ערכו (טיפוסו) של.exp2 ולאחריו sum = 0; for(i = 1; i <= n; i++) sum += i * i; קודם ראינו את התוכנית דרך נוספת לביצוע הסכום הנ"ל: for(sum = 0, i = 1; i <= n; sum += i * i, i++); ככלל, בסוגרייםהצמודים ל- for יופיעוביטוייםהקשורים בבקרת הלולאה (אך לא בתכנה), ולכןנעדיףאת הפתרון הראשון שראינו. 15

16 משפטי break ו- continue משפטיםמיוחדים לצורך שבירתרצף הביצוע בקוד. break כאשר מופיע בתוך switch גורם לסיוםה- switch ומעבר למשפט הבא. כאשר מופיע בתוך לולאה, גורם לסיוםהלולאה ומעבר למשפט הבא. continue ניתןלשימושבלולאותבלבד. בלולאה. גורם למעבר לסוף האיטרציה הנוכחית 16

17 דוגמה לשימוש ב- continue for(i = 0; i < 100; i++) { scanf("%d",&num); if(num < 0) continue; sum += num; } i = 0; while(i < 100) { scanf("%d",&num); if(num < 0) continue; sum += num; i++; } קטע קוד זה מבצע קריאה של 100 מספרים שלמים וסוכם את אי-השליליים שביניהם. מה ההבדל בין הקוד העליון לקוד הבא? האם הם שקולים? בקוד זה נידרש לספק 100 מספרים אי-שליליים על מנת לסיים התוכנית. מה נדרש לשנות על מנת לקבל שקילות לתוכנית העליונה? 17

18 דוגמה לשימוש ב- break sum = 0; while(1) { scanf("%d",&num); if(num < 0) break; sum += num; } קטע קודזה מסכם אתהמספריםבקלטעד הראשון. (לא כולל) המספר השלילי 18

19 לולאות אינסופיות לולאות בהן ערך הביטוי הנבדק שונה מ- 0 תמיד. לולאות אינסופיותנגרמותלעיתיםבשל שגיאהובמקרים אלו ניתןלצאת מהן עלידי עצירתהתכניתבאמצעותמערכת ההפעלה (אוכיבוי המחשב). while(1) { } for( ;1; ) { } ניתן לייצר לולאות אינסופיות במכוון. לדוגמה: for( ; ; ) { } היציאה מלולאות אינסופיות מכוונות נעשית באמצעות פקודות כגון.return, break 19

20 דיוק בבדיקת תנאי הלולאה האם שתי הלולאות הבאות מבצעות את אותה הפעולה? for(x = 0.0; x < 3.0; x += 0.2) for(x = 0.0; x!= 3.0; x += 0.2) ככלל, נעדיף אופרטוריםשלסדר >) <, <=, (>=, שלהשוואה (=!,==) בתנאיהביצוע שללולאות. על פני אופרטורים 20

21 תוכנייה משפטים בשפת משפטי תנאי (Statements) C - לולאות for while דוגמאות: מציאת GCD מציאת שורש מציאת מספר ראשוני (אלגוריתם אוקלידס) (שיטת ניוטון-רפסון) 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 21

22 מציאת המכנה המשותף הגדול ביותר (GCD).(Greatest Common Divider) מחלק משותף גדול ביותר :GCD בהינתןשנישלמיםחיוביים m ו- n gcd(m,n) הוא השלםהגדולביותר שמחלקאת שניהם. פתרון ביה"ס יסודי: פרק את שני המספרים לגורמים ראשוניים. מכפלת הגורמים הראשוניים המשותפים היא ה- GCD. לדוגמא: n=270 m=700 n = 2 * 3 3 * 5 m = 2 2 * 5 2 * 7 gcd(700, 270) = 2 * 5 = 10 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 22

23 פירוק מספר לגורמים ראשוניים המשפט היסודי (אקסיומה) של האריתמטיקהקובע כי כל מספר שלםיכול להיכתב בצורהייחודית כמכפלת מספרים ראשוניים. פירוק מספרn לגורמים: אםn ראשוני, הוסף אתn לקבוצתהמחלקיםועצור. אחרת, עבור סדרתית עלהמספרים הראשונייםעד שורש n. הוסף אתp, המספר הראשוני הראשון המחלק את n, לקבוצתהמחלקיםוחזור על התהליך עם.n/p לדוגמה, עבור :n=30 5 = 5 * 5 3 = 15 * 15 2 = 30 קושי: האלגוריתםאינומעשי עבור n גדול. למשלעבור מספר בן 18 ספרות יש צורך לעבור עלכל הראשוניים עד 1,000,000,000 (השורש שלו!). מסיבה זו, פירוק לגורמיםראשוניים משמש בסיס לקריפטוגרפיה מודרנית. 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 23

24 אלגוריתם אויקלידס לחישוב GCD אלגוריתם אוקלידס מתבסס על הטענות המתמטיות הבאות: r. = m % ואתn מחלקאתn ורק אםq אם ואתn מחלקאתm q נובע מהשוויון.m = r + q * n עבורn השונה מ- 0 gcd(n,m%n).gcd(m,n) = m gcd(m, 0) = עבורm שאינו 0. מה קורה אםm n? > Euclid Aristotle Eudoxus of Cnidus 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 24

25 ההיגיון הבסיסי נניחכיq הוא מחלקכלשהו המחלקבאופן שלםהן אתm והן אתn. נניחכיm>n. m-2n m-n m q n ברור כי.gcd(m,n)=gcd(m-n,n) באופן דומה,,gcd(m,n)=gcd(m-2n,n) וכו'. אם נמשיך בהפחתה נגיע לקשר:.gcd(m,n)=gcd(n,m%n) היפוך הסדר נובע מכך שבהכרח:.m%n<n 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 25

26 אלגוריתם אויקלידס, דוגמאות דוגמא 1 דוגמא 2 m = q*n + r m n m n 700 = 2* = 1* = 1* = 2* = 5* הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 26

27 אלגוריתם אויקלידס, הוכחת נכונות נסמןב- m i ו- n i אתערכי המשתניםm ו- n בתוםהאיטרציה ה- i. שמורה (תכונה שנשמרתבמהלך האלגוריתם): gcd(m 0,n 0 ) = gcd(m i,n i ) הוכחת השמורה נעשיתבאינדוקציה על i: בסיס: מיידי. הנחה: ) i gcd(m 0,n 0 ) = gcd(m i,n צעד האינדוקציה: הנחת האינדוקציה טענה מתמטית אלגוריתם gcd(m i+1,n i+1 ) = gcd(n i,m i %n i ) = gcd(m i,n i ) = gcd(m 0,n 0 ) בתום האיטרציה האחרונה: gcd(m 0,n 0 ) = gcd(m N,n N ) = gcd(m N,0) = m N 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 27

28 אלגוריתם אויקלידס, קידוד #include <stdio.h> RUN int main() { unsigned int m, n; } scanf("%u%u", &n, &m); while(n!= 0) { unsigned int temp = n; n = m % n; m = temp; } if(m!= 0) printf("the gcd is %d\n", m); return 0; 4 הרצאה מבוא למדעי המחשב. כל הזכויות שמורות 28

29 דוגמה: מציאת שורשי משוואה הגדרת הבעיה: חשב אתנקודת החיתוךשלפונקציה נתונה f(x) עם ה- 0, כלומרפתור,f(x)=0 עבורx ממשי. f(x) x ניישם שיטה איטרטיבית לחיפוש הפתרון שיטת ניוטון-רפסון. נתחיל בנקודה x 0 וממנה נעדכן לנקודות המתקרבות לחציית ציר ה- x. 29

30 עקרון הפעולה f x f x f x נזכיר פיתוח לטור טיילור סביב נקודה: 2 ( + δ ) = ( ) + '( ) δ + δ +... f(x) לפונקציות חלקות ו- מספיק קטן, נקבל כי f ( x f ''( x) 2 δ + δ ) = 0 δ = f ( x) f '( x) x+δ x x 30

31 מציאת שורשים בשיטת ניוטון-רפסון שיטת ניוטון-רפסון (Newton-Raphson) - שיטה למציאתשורששל פונקציה גזירה בתחוםנתוןע"י קיזוז הסטייה שלה. נתוניעזר נדרשים: נקודה הנגזרתשל הפונקציה. קרובה לשורש, ושיטה יעילה לחישוב x 0 x 0 31

32 שיטת ניוטון-רפסון - המשך השיטה: חזור: עבור לנקודה שבה חותך המשיק (הנגזרת) את הצירהאופקי x i+1 = x i - f(x i ) / f'(x i ) הנחה: הקטע איננומכיל נקודותקיצון (שבהן הנגזרת מתאפסת) f(x 0 ) f(x 0 ) / (x 0 - x 1 ) = tan α = f'(x 0 ) x 1 x 0 32

33 שיטת ניוטון-רפסון - הדגמה x 1 x 0 x 3 x 2 33

34 - תנאי עצירה שיטת ניוטון-רפסון x i+1 - x i < δ f(x i+1 ) < ε בפתרון שנראה, נשתמשבמספר האיטרציותכתנאי עצירה. שילוב התנאיםל- δו- ε נשאיר כתרגיל. < ε x i+1 x i < δ 34

35 קוד מקור עבור הפונקציה 9 - f(x)=x 2 #include <stdio.h> #define MAX_ITERATIONS 10 int main() { double a, fa, fda; int i; בעיה: נדרשלכתוב תוכנית חדשה לכל פונקציה f. פתרון: שימוש בפונקציות ומצביעים לפונקציות (בהמשך). RUN } scanf("%lf", &a); fa = a*a - 9; for(i = 0; i < MAX_ITERATIONS && (fa!= 0); ++i) { fa = a*a - 9; fda = 2*a; /* what if fda == 0? */ a = a - fa/fda; printf("iteration: %d, Solution: %.12f\n", i, a); } printf("solution is: %.12f\n", a); return 0; 35

36 אלגוריתם לבדיקת ראשוניות בהינתן שלםחיובי n, ישלקבועהאם הוא ראשוני. מחלקבתחום 2,3,,n-1. איננוראשוניאםורקאםיש ל- n n unsigned int is_prime = 1, n, i; RUN... if(n == 1) is_prime = 0; else { for(i = 2; i < n; i++) if(n % i == 0) is_prime = 0; } if(is_prime) printf("%d is a prime\n", n); else printf("%d is not a prime\n", n); 36

37 #include <math.h>... int is_prime = 1, n, i;... if(n == 1 (n!= 2 && n % 2 == 0)) is_prime = 0; else { int sqrt_n = (int)sqrt(n); for(i = 3; i <= sqrt_n; i+=2) if(n % i == 0){ is_prime = 0; break;} } if(is_prime) printf("%d is a prime\n", n); else printf("%d is not a prime\n", n);... בדיקת ראשוניות: הצעות ייעול RUN אםn איננו 2 אך מתחלק ב- 2 אזי הוא אינו ראשוני. מספיק לבדוק מחלקים אפשריים עד שורשn. כיוון ש- n אינו זוגי, ניתן לדלגעל בדיקת המחלקים הזוגיים. כשנמצא מחלק שלם, אין סיבה להמשיך בבדיקה. 37

מבוא למדעי ה מחשב תוכנ י יה הרצאה 4: משפטים, תנאים ולולאות

מבוא למדעי ה מחשב תוכנ י יה הרצאה 4: משפטים, תנאים ולולאות מבוא למדעי ה מחשב הרצאה 4: משפטים, תנאים ולולאות מבוסס על השקפים שנערכו במקור ע"י שי ארצי, גיתית רוקנשטיין, איתן אביאור, וסאהר אסמיר, ועובדו ע"י מיכאל אלעד בסמסטר חורף 2007. תוכנ י יה משפטים בשפת - C (Statements)

Διαβάστε περισσότερα

לולאות קבוע, פסוק while פסוק do-while פסוק for

לולאות קבוע, פסוק while פסוק do-while פסוק for מבוא למחשב בשפת C הרצאה 5 : לולאות מבוססעלהשקפיםשחוברוע"ישיארצי, גיתיתרוקשטיין, איתןאביאור וסאהראסמירעבורהקורס "מבואלמדעיהמחשב". נכתב על-ידי טל כהן, נערך ע"י איתן אביאור. כלהזכויותשמורותלטכניון מכוןטכנולוגילישראל

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל משפטי בקרה ולולאות שעור מס. 3 דרור טובי דר' 1 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל - הקדמה משפט התנאי if המשימה: ברצוננו לכתוב תוכנית המקבלת שני מספרים בסדר כל שהוא ולהדפיס אותם בסדר

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

מבני בקרה ב C שעור מס. 2 דר' דרור טובי, המרכז האוניברסיטאי אריאל בשומרון.

מבני בקרה ב C שעור מס. 2 דר' דרור טובי, המרכז האוניברסיטאי אריאל בשומרון. מבני בקרה ב C שעור מס. 2 דרור טובי דר' 1 פקודת if הוראה תנאי True (1) False (0) if ( grade >= 60 ) cout = 60 ) { cout

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

תרגול 8: מטלאב לולאות

תרגול 8: מטלאב לולאות מבוא למחשב בשפת Matlab : מטלאב לולאות נכתב על-ידי רמי כהן,אולג רוכלנקו, לימור ליבוביץ ואיתן אביאור כל הזכויות שמורות לטכניון מכון טכנולוגי לישראל לולאת while a=input('enter a positive number:'); קליטת

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות

טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות את הפונקציות הטריגונומטריות ניתן להגדיר באמצעות הקשרים בין הניצבים לבין היתר ובין הניצבים עצמם במשולש ישר זווית בלבד: לדוגמה: סינוס זווית BAC (אלפא)

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

10. Εντολές επανάληψηςκαι οι εντολές

10. Εντολές επανάληψηςκαι οι εντολές Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων 10. Εντολές επανάληψηςκαι οι εντολές for και do-while Ιωάννης Κατάκης Σήμερα o for o break/continue o dowhile() o φωλιασμένοι βρόχοι o παραδείγματα Ο βρόχος

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

Κεφάλαιο : Επαναλήψεις (for, do-while)

Κεφάλαιο : Επαναλήψεις (for, do-while) Κεφάλαιο 5.4-5.11: Επαναλήψεις (for, do-while) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήµερα while(){ τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές Παραδείγµατα Σήµερα for(){ Η εντολές break/continue;

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

Διάλεξη 5η: Εντολές Επανάληψης

Διάλεξη 5η: Εντολές Επανάληψης Διάλεξη 5η: Εντολές Επανάληψης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Εντολές Επανάληψης CS100, 2015-2016

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי

ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי ננסה להשתמש בכך שהפונקציה היא רקורסיבית על מנת לרשום גם עבור הסיבוכיות ביטוי רקורסיבי. factorial() 3 מתחילים מכתיבת ביטוי לא מפורש ל-( T( ביטוי רקורסיבי

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ

ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ ΕΠΙΣΗΜΑΝΣΗ: Οι απαντήσεις παρουσιάζουν (ενδεχομένως σε μερικά σημεία διορθωμένες) τις καλύτερες απαντήσεις φοιτητών. Για το συγκεκριμένο σύνολο επιλέχτηκαν οι απαντήσεις

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 חוברת עזר לקורס חשבון אינפיטיסימלי 495 עמוד חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 תוכן העניינים נושא עמוד נושא כללי 3 רציפות זהויות טריגונומטריות 4

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

Υπολογισμός - Εντολές Επανάληψης

Υπολογισμός - Εντολές Επανάληψης Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Επανάληψης ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

Ασκήσεις & παραδείγματα για επανάληψη

Ασκήσεις & παραδείγματα για επανάληψη Λυμένα παραδείγματα Ασκήσεις & παραδείγματα για επανάληψη Χρησιμοποιώντας την ρητή (cast) ανάθεση main () int x, y; x = 7; y = 5; printf("given x = %d, y = %d\n", x, y); printf("x / y produces: %d\n",

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )} כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εισαγωγή ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ Ένα πρόγραμμα σε C περιλαμβάνει μια ή περισσότερες συναρτήσεις

Διαβάστε περισσότερα

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010.

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010. ודים בוגיינקו תורגם ע"י מריה סבצ'וק משוואות פ ל זהו תרגום מרוסית של הספר: В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 00. http://biblio.mccme.ru/ode/34/shop קובץ PDF של ההוצאה הראשונה ברוסית:

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

. {e M: x e} מתקיים = 1 x X Y

. {e M: x e} מתקיים = 1 x X Y שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך

Διαβάστε περισσότερα

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5 הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) ביטויים רגולריים הרצאה 5 המצגת מבוססת על ספרם של פרופ' נסים פרנסיז ופרופ' שמואל זקס, "אוטומטים ושפות פורמליות", האוניברסיטה הפתוחה, 1987. גרסה ראשונה

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

תכנות בשפת C פרק שלישי: בקרת זרימה שייקה בילו יועץ ומרצה בכיר למדעי המחשב וטכנולוגית מידע מומחה למערכות מידע חינוכיות, אקדמיות ומנהליות

תכנות בשפת C פרק שלישי: בקרת זרימה שייקה בילו יועץ ומרצה בכיר למדעי המחשב וטכנולוגית מידע מומחה למערכות מידע חינוכיות, אקדמיות ומנהליות תכנות בשפת C פרק שלישי: בקרת זרימה שייקה בילו יועץ ומרצה בכיר למדעי המחשב וטכנולוגית מידע מומחה למערכות מידע חינוכיות, אקדמיות ומנהליות תזכורת: שימוש במשתנים מהו משתנה הגדרת משתנים ;int i ; char c= a קלט/פלט

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

(Derivative) של פונקציה

(Derivative) של פונקציה נגזרת Drivtiv של פונקציה t הנגזרת היא המושג החשוב בקורס, ולה חשיבות מעשית רבה היא מכמתת את קצב השינוי של תופעה כלשהי פיסיקלית, כלכלית, וויזואלית דוגמאות: מהירות של עצם היא קצב השינוי במקומו, ולכן המהירות

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Έλεγχος ροής Δομή επιλογής (if, switch) Δομές επανάληψης (while, do-while, for) Διακλάδωση

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

רשימת בעיות בסיבוכיות

רשימת בעיות בסיבוכיות ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:

Διαβάστε περισσότερα